An elevator weighing 2.00 x 10^5 N is supported by a steel cable. What is the tension in the cable when the elevator is accelerated upward at a rate of 3.00 m/s^2? (g=9.81 m/s^2)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The tension in the cable is the net force by which it pulls the elevator. The result of the tension T in the cable to which an elevator is attached is the acceleration of the elevator in an upward direction. The force of gravity acting downwards accelerates the elevator by...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

The tension in the cable is the net force by which it pulls the elevator. The result of the tension T in the cable to which an elevator is attached is the acceleration of the elevator in an upward direction. The force of gravity acting downwards accelerates the elevator by 9.8 m/s^2. If the net acceleration of the elevator due to the pull of the steel cable is 3 m/s^2 upwards, the actual acceleration towards the top is 3 + 9.81 = 12.81 m/s^2.

This implies a force equal to 2*10^5*12.81 acting on the elevator in the upwards direction. This force results in a tension equal to 2562 kN in the cable.

The required tension in the cable is 2562 kN.

Approved by eNotes Editorial Team