# I am stuck with question number four in the pictures attached. The sheet gives information on which graphs can be used to find which information. How do I find variation in the weather patterns by...

I am stuck with question number four in the pictures attached. The sheet gives information on which graphs can be used to find which information. How do I find variation in the weather patterns by using the dot plot and the bar graph?

link to graphs: http://media.apexlearning.com/One-Off/200901/06/fb431897-4348-4425-8343-ce0852614a82.pdf

link to assignment questions: http://media.apexlearning.com/One-Off/201210/30/52e070d0-83a0-4fac-bcee-6c77f9967d47.pdf

**Images:**

### 1 Answer | Add Yours

Hello!

At first, consider **line graph**. It gives the same information as the **bar graph**, but line graph combines data from both cities which makes comparing easier.

From the line graph we see those differences:

**1**) while Portland's graph has one minimum (near July) and one maximum (near December) and is monotone between them, the Tampa's graph has more oscillations (the additional one is at March-April).

**2**) one graph has maximum near the minimum of the second graph, and vice versa. In another words, when rainfall is maximum at one city, it is minimum at the other.

**3**) in general, Tampa's changes during one month are more rapid than Portland's (and this is better seen at the line graph because it has lines between points).

**4**) Tampa has greater minimum and maximum (almost 2 and 8) than Portland (less than 1 and 6).

Actually, we can observe this from **bar graphs** (as you suggest) also but with less ease.

Now go to the **dot plots**. They group data by value, not by argument (independent variable), as all other graphs and charts do here.

**1**) dot graphs also show us the difference between minimums and maximums. Portland's minimum is 1 against Tampa's 2, and maximums are 8 and 6.

**2**) Tampa's graph has a "hole" at 5, i.e. no month when rainfall is 5 inches.

**3**) the most frequent value is 2 for both cities, but Tampa reaches it 5 times, not 4 as Portland.

4) (not differences but similarities): all other values except the most frequent are reached 1 or 2 times in both cities, the number of different values is 6 for both and most dots are located toward the minimum end.

Hope this helps.