# If **alpha **and **beta **are different complex number whit **modulus of beta = 1**, then find
**the modulus of ((beta - alpha)****(1)-( conjugate of alpha)(beta)))** I have to find modulus of whole question (means
(**β-****α**)/(1-(**conjugate of ****α)****β)**.

**α**)/(1-(

**conjugate of**

**α)****β)**-
*print*Print -
*list*Cite

## Expert Answers

*calendar*Educator since 2011

*write*5,348 answers

*star*Top subjects are Math, Science, and Business

You need to consider the complex numbers ` alpha` and `beta,` such that:

`alpha = a + b*i`

`beta = c + d*i`

The problem provides the information that the absolute value of the complex number `beta` is 1, such that:

`|beta| = sqrt(c^2 + d^2) = 1 => c^2 + d^2 = 1 => c = 0 , d = 1 or c = 1, d = 0.`

You need to evaluate `|(beta - alpha)/(1 - bar alpha*beta)|` , such that:

`|(beta - alpha)/(1 - bar alpha*beta)| = |(beta - alpha)|/|(1 - bar alpha*beta)|`

You need to evaluate beta - alpha, such that:

`beta - alpha = (a - c) + (b - d)*i => |(beta - alpha)| = sqrt((a - c)^2 + (b - d)^2)`

You need to evaluate 1 - bar alpha*beta, such that:

`1 - (a - b*i)(c + d*i) = 1 - (ac + bd + i*(ad - bc))`

`1 - (a - b*i)(c + d*i) = 1 - (ac + bd) - i*(ad - bc)`

`|1 - (a - b*i)(c + d*i)| = sqrt((1 - (ac + bd))^2 + (ad - bc)^2)`

`|(beta - alpha)|/|(1 - bar alpha*beta)| = (sqrt((a - c)^2 + (b - d)^2))/(sqrt((1 - (ac + bd))^2 + (ad - bc)^2))`

Considering `c = 0 , d = 1` , yields:

`|(beta - alpha)|/|(1 - bar alpha*beta)| = (sqrt(a^2 + (b - 1)^2))/(sqrt((1 - b)^2 + a^2)) = 1`

Considering `d = 0 , c = 1` , yields:

`|(beta - alpha)|/|(1 - bar alpha*beta)| = (sqrt((a - 1)^2 + b^2))/(sqrt((1 - a)^2 + (b)^2)) = 1`

**Hence, evaluating the absolute value of the complex number `|(beta - alpha)|/|(1 - bar alpha*beta)|` , under the given conditions, yields **`|(beta - alpha)|/|(1 - bar alpha*beta)| = 1.`

## Related Questions

- If `alpha` and `beta` are the roots of 5x^2-px+1=0 and `alpha - beta = 1`, then find p?
- 1 Educator Answer
- If `alpha` and `beta` are the roots of the quadratic equation x^2 – 3x -1 = 0, find the value of...
- 1 Educator Answer
- `alpha` and `beta` are roots of the equation x^2-px+q=0 .Find the equation whose roots are...
- 1 Educator Answer
- The roots of equation 2x^2-5x+3=0 are alpha and beta. Find an equation with integral coefficients...
- 1 Educator Answer
- Let α and β be two solutions of the equation x^2-x+4=0. Then β/α+α/β=?
- 1 Educator Answer