A 50 kg block, attached to an ideal spring with a spring constant of 80 N/m, oscillates on a horizontal frictionless surface. When the spring is 4 cm shorter than its equilibrium length, the speed of the block is 0.5 m/s. Find the greatest speed of the block.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We can use the conservation of energy to solve this problem. Since the block oscillates on the frictionless surface, the sum of its kinetic energy and the potential energy of the spring remains constant:

`E = mv^2/2 + kx^2/2` . Here, v is the speed of the block at the time when the spring is the length x shorter than its equilibrium length.

We are given that the block has speed v = 0.5 m/s when x = 4 cm = 0.04 m. This means the total energy of the block is

`E = 50kg*(0.5 m/s)^2/2 + 80 N/m*(0.04 m)^2/2 = 6.31 J` .

The block has the greatest speed when it passes the equilibrium position, that is, when the spring is not stretched and x = 0. At that point the total energy of the block is its kinetic energy:

`mv_(max)^2/2 = E = 6.31 J` .

From here, solving for the greatest speed of the block results in

`v_(max) = sqrt((2E)/m) = 0.503 m/s`

The greatest speed of the block is 0.503 m/s.

 

 

 

 

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team