5 + sqr root 3 divide by 5 - sqr root 3

rationalise the denominator in each expression

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to rationalize the denominator in (5 + sqrt 3)/ ( 5 - sqrt 3)

This can be done by multiplying the numerator and denominator by ( 5 + sqrt 3). Using the relation (a - b)(a + b) = a^2 - b^2 gives a rational denominator

(5 + sqrt 3)( 5 + sqrt 3) / ( 5 - sqrt 3)( 5 + sqrt 3)

=> (5 + sqrt 3)^2 / ( 5^2 - (sqrt 3)^2)

=> (25 + 3 + 10 sqrt 3) / ( 25 - 3)

=> (28 + 10 sqrt 3) / 22

=> (14 + 5* sqrt 3) / 11

The required result is: (14 + 5* sqrt 3) / 11

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

The question asks us to rationalize the denominator in the expression 5 + sqrt 3 divided by 5 - sqrt 3.

=> Multiply the numerator and denominator by the conjugate:

[(5 + sqrt 3)/(5 - sqrt 3)] * [ (5 + sqrt 3)/5 + sqrt 3)

=> ( 25 + 10 sqrt 3 + 3)/(25 - 3)

=> (28 + 10 sqrt 3)/(22)

Simplify the fraction:

=> (14 + 5 sqrt3)/(11)

The answer is (14 + 5 sqrt3)/(11).

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial