`3x - 2y + z = -15, -x + y + 2z = -10, x - y - 4z = 14` Use matricies to solve the system of equations. Use Gaussian elimination with back-substitution.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`3x-2y+z=-15`

`-x+y+2z=-10`

`x-y-4z=14` 

`A=[[3,-2,1],[-1,1,2],[1,-1,-4]]`

`b=[[-15],[-10],[14]]`

`[A|b]=[[3,-2,1,-15],[-1,1,2,-10],[1,-1,-4,14]]`

Multiply 2nd Row by 3 and add Row 1

`[[3,-2,1,-15],[0,1,7,-45],[1,-1,-4,14]]`

Multiply 3rd Row by 3 and subtract it from Row 1

`[[3,-2,1,-15],[0,1,7,-45],[0,1,13,-57]]`

Subtract Row 2 from Row 3

`[[3,-2,1,-15],[0,1,7,-45],[0,0,6,-12]]`

Now the equations can be written as,

`3x-2y+z=-15`     ----equation 1

`y+7z=-45`          ------ equation 2

`6z=-12`                 ------ equation 3

From equation 3,

`z=-12/6=-2`

Now substitute back z in equation 2,

`y+7(-2)=-45`

`y-14=-45`

`y=-45+14`

`y=-31`

Substitute back the value of y and z in equation 1,

`3x-2(-31)+(-2)=-15`

`3x+62-2=-15`

`3x=-15-60`

`3x=-75`

`x=-75/3`

`x=-25`

So the solution is x=-25, y=-31 and z=-2``

 

` `

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial