The 3rd term of an AP is 24 and the 5th term is 36. What is the sum of the first 20 terms?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let a1, a2, a3, a4, a5, ..., a20 are terms of an A.P

Given that:

a3 = 24

a5 36

We need to find the sum of the first 20 terms.

First we need to find the value of a1 and the common difference r.

We know that:

a3= a1+ 2r = 24 .............(1)

a5= a1+ 4r = 36 ..............(2)

We will subtract (1) from (2) .

==>  2r = 12 ==> r= 6  ==> a1= 24- 12 = 12

Now we know that the sum of n terms of A.P is given by :

Sn = (n/2)*(2a1+ (n-1)*r )

==> S20 = (20/2) ( 2*12 + 19*6) = 10* 138 = 1380.

Then the sum of the first 20 terms is 1380.

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

The nth term of an AP can be written as Tn = a + (n-1)d.

T3 = a + 2d = 24

T5 = a + 4d = 36

T5 – T3 = 2d = 12

=> d = 6

a = 24 – 2d = 12

The sum of the first 20 terms is (T1 + T20)*(20/2)

=> (12 + 12 + 19*6)*10

=> 138*10

=> 1380

The required sum of the first 20 terms is 1380.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team