`2xy' - ln(x^2) = 0 , y(1) = 2` Find the particular solution that satisfies the initial condition

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The problem: `2xy'-ln(x^2)=0 ` is as first order ordinary differential equation that we can evaluate by applying variable separable differential equation:



`N(y) dy=M(x) dx`

Apply direct integration:` intN(y) dy= int M(x) dx` to solve for the

 general solution of a differential equation.

Then, `2xy'-ln(x^2)=0` will be rearrange in to `2xy'= ln(x^2)`

Let `y' = (dy)/(dx)` , we get: `2x(dy)/(dx)= ln(x^2)`

or`2x(dy)= ln(x^2)(dx)`

Divide both sides by `x` to express in a form of `N(y) dy=M(x) dx` :

`(2xdy)/x= (ln(x^2)dx)/x`

`2dy= (ln(x^2)dx)/x`

Applying direct integration, we will have:

`int 2dy= int (ln(x^2)dx)/x`

For the left side, recall `int dy = y` then `int 2dy = 2y`

For the right side, we let `u =x^2` then `du =2x dx` or `dx=(du)/(2x)` .

`int (ln(x^2))/xdx=int (ln(u))/x*(du)/(2x)`

                    ` =int (ln(u)du)/(2x^2)`

                    ` =int (ln(u)du)/(2u) `

                    ` =1/2 int ln(u)/u du`


Let `v=ln(u)` then `dv = 1/udu` ,we get:

`1/2 int ln(u)/u du=1/2 int v* dv`

Applying the Power Rule of integration: `int x^n dx = x^(n+1)/(n+1)+C`

`1/2 int v* dv= 1/2 v^(1+1)/(1+1)+C`

                    `= 1/2*v^2/2+C`


Recall `v = ln(u)` and `u = x^2` then `v =ln(x^2)` .

The integral will be:

`int (ln(x^2))/xdx=1/4(ln(x^2))^2 +C or(ln(x^2))^2 /4+C`

Combing the results from both sides, we get the general solution of the differential equation as:

`2y = (ln(x^2))^2 /4+C`

or `y =(ln(x^2))^2 /8+C`


To solve for the arbitary constant (C), we consider the initial condition `y(1)=2` 

When we plug-in the values, we get:

`2 =(ln(1^2))^2 /8+C`

`2 =0/8+C`


then `C=2`

.Plug-in `C=2` on the general solution: `y =(ln(x^2))^2 /8+C` , we get the

particular solution as:

`y =(ln(x^2))^2 /8+2`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial