If 2cosx*cosy=1 and tanx+tany=2, find the values of x and y.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should remember that `tan x = sin x/cos x`  and `tan y = sin y/cos y` , hence, substituting these fractions for `tan x`  and `tan y`  in the equation `tanx+tany=2`  yields:

`sin x/cos x + sin y/cos y = 2`

You need to bring these fractions to a common denominator such that:

`(sin x*cos y + sin y*cos x)/(cos x*cos y) = 2 `

Notice that the problem provides the information that `2cosx*cosy=1` , hence, you may evaluate `cos x*cos y`  such that:

`2cosx*cosy=1 => cosx*cosy=1/2`

Substituting `1/2`  for `cosx*cosy in (sin x*cos y + sin y*cos x)/(cos x*cos y) = 2`  yields:

`(sin x*cos y + sin y*cos x)/(1/2) = 2`

Notice that you may write `sin x*cos y + sin y*cos x`  as `sin (x+y)`  such that:

`2sin(x+y) = 2 => sin(x+y) = 1 => x+y = pi/2`

You may write `x = pi/2 - y`  such that:

`tan(pi/2 - y) + tan y = 2`

`sin(pi/2 - y + y)/cos(pi/2-y)*cosy = 2`

`sin pi/2 = 2cos(pi/2-y)*cosy `

You should substitute `sin y`  for `cos(pi/2-y)`  such that:

`sin pi/2 = 2sin y*cos y`

You need to remember the equation that gives the sine of double angle such that:

`sin pi/2 = sin 2y =>2y = pi/2=> y = pi/4`

Since `x = pi/2 - y => x = pi/4`

Hence, evaluating x and y under the given conditions yields `x = y = pi/4.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team