√2^1 (u^7/2 - 1/u^5)du

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the property of linearity of integral, hence, you need to split the given integral in two such that:

`int_1^sqrt2 (u^7/2 - 1/u^5)du = int_1^sqrt2 (u^7/2)du - int_1^sqrt2 (1/u^5)du `

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)int_1^sqrt2 u^7 du -int_1^sqrt2 u^(-5) du`

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)(u^8/8)|_1^sqrt2...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

You need to use the property of linearity of integral, hence, you need to split the given integral in two such that:

`int_1^sqrt2 (u^7/2 - 1/u^5)du = int_1^sqrt2 (u^7/2)du - int_1^sqrt2 (1/u^5)du `

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)int_1^sqrt2 u^7 du -int_1^sqrt2 u^(-5) du`

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)(u^8/8)|_1^sqrt2 - (u^(-5+1))/(-5+1)|_1^sqrt2 `

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)(u^8/8)|_1^sqrt2 + 1/(4u^4)|_1^sqrt2 `

You need to use the fundamental theorem of calculus such that:

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)((sqrt2)^8/8 - 1^8/8)+ (1/4)(1/(sqrt2)^4 - 1/1^4)`

`int_1^sqrt2 (u^7/2 - 1/u^5)du = (1/2)(16/8 - 1/8) + (1/4)(1/4 - 1)`

`int_1^sqrt2 (u^7/2 - 1/u^5)du = 15/16- 3/16`

`int_1^sqrt2 (u^7/2 - 1/u^5)du = 12/16 => int_1^sqrt2 (u^7/2 - 1/u^5)du = 3/4`

Hence, evaluating the given definite integral yields `int_1^sqrt2 (u^7/2 - 1/u^5)du = 3/4.`

Approved by eNotes Editorial Team