`12yy' - 7e^x = 0` Find the general solution of the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the given problem: `12yy'-7e^x=0` , we can evaluate this by applying variable separable differential equation in which we express it in a form of `f(y) dy = f(x)dx` .

 Then, `12yy'-7e^x=0` can be rearrange into `12yy'= 7e^x`

Express `y'`  as `(dy)/(dx)` :

`12y(dy)/(dx)= 7e^x`

Apply direct integration in the form of `int f(y) dy = int f(x)dx` :

`12y(dy)/(dx)= 7e^x`

`12ydy= 7e^xdx`

`int12ydy= int 7e^x dx`

For the both side , we apply basic integration property: `int c*f(x)dx= c int f(x) dx`

`12 int ydy= 7int e^x dx`

Applying Power Rule integration: `int u^n du= u^(n+1)/(n+1)` on the left side.

`12int y dy= 12 *y^(1+1)/(1+1)`

               `= (12y^2)/2`

               `=6y^2`

Apply basic integration formula for exponential function: `int e^u du = e^u+C ` on the right side.

`7int e^x dx = 7e^x+C`

Combining the results for the general solution of differential equation:

`6y^2=7e^x+C`

or 

`(6y^2)/6=(7e^x)/6+C`

`y^2 = (7e^x)/6+C`

`y = +-sqrt((7e^x)/6+C)` 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial