`10^(3x-8)=2^(5-x)` Solve the equation.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To solve the equation: `10^(3x-8)=2^(5-x)` , we may take "ln" on both sides.

`ln(10^(3x-8))=ln(2^(5-x))`

Apply natural logarithm property: `ln(x^n) = n*ln(x)` .

`(3x-8)ln(10)=(5-x)ln(2)`

Let `10=2*5` .

`(3x-8)ln(2*5)=(5-x)ln(2)`

Apply natural logarithm property: `ln(x*y) = ln(x)+ln(y)` .

`(3x-8)(ln(2) +ln(5))=(5-x)ln(2)`

Distribute to expand each side.

`3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)`

Isolate all terms with x's on one side.

`3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)`

                                  `+8ln(2) +8ln(5) `     `+8ln(2) `        ` +8ln(5)`  

------------------------------------------------------------------------------------------

`3xln(2)+3xln(5)+0 +0 =13ln(2)-xln(2) +8ln(5)`

 

`3xln(2)+3xln(5) =13ln(2)-xln(2) +8ln(5)`

`+xln(2) `                      ` +xln(2)`

--------------------------------------------------------------------------

`4xln(2) +3xln(5) =13ln(2)-0+8ln(5)`

`4xln(2) +3xln(5) =13ln(2)+8ln(5)`

Factor out common factor `x` on the left side.

 

`x(4ln(2) +3ln(5)) =13ln(2)+8ln(5)`

Divide both sides by `(4ln(2) +3ln(5))` .

`(x(4ln(2) +3ln(5)))/(4ln(2) +3ln(5)) =(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`

`x=(13ln(2)+8ln(5))/(4ln(2) +3ln(5))`

Apply natural logarithm property: `n*ln(x)=ln(x^n)`

`x=(ln(2^(13))+ln(5^8))/(ln(2^4) +ln(5^3))`

`x=(ln(8192)+ln(390625))/(ln(16) +ln(125))`

Apply natural logarithm property: `ln(x)+ln(y)=ln(x*y)` .

`x=(ln(8192*390625))/(ln(16*125))`

`x=(ln(3200000000))/(ln(2000))`

or

`x~~2.879`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial