1. Suppose A = B^nC^m, where A has dimensions LT, B has dimensions L2T−1, and C has dimensions LT2. Then the exponent’s n and m have the values?    

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`A = B^n C^m`

Where `A = LT` ; `B = L^2T^-1` and `C= LT^2`

Arrange the equation first by substituting the terms given. 

`[L][T] = ([L]^2 [T]^-1)^n ([L] [T]^2)^m`

`[L][T] = [L]^(2n+m) [T]^(-n + 2m)`

 

eq 1 ->  `1 = 2n + m`          --> `1 = 2n + m`

eq 2 -> `(1 = -n+ 2m)*2` --> `2 = -2n + 4m`    add 
                                               -------------------

                                                `3 = 5m`

                                                `m = 3/5`

substitute `m = 3/5` to any of the two equations.

 

eq 1-> `1 = 2n + m`

           `1 = 2n + (3/5)`

           `1 -3/5 = 2n`

           `2/5 = 2n`

       

           `n = 1/5`

 

Therefore the values of n and m are 1/5 and 3/5 respectively. 

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team