Prove the identity `{1-sinx}/cosx=cosx/{1+sinx}`
- print Print
- list Cite
Expert Answers
lfryerda
| Certified Educator
calendarEducator since 2012
write738 answers
starTop subjects are Math and Science
In order to prove the trigonometric identity, we need to start with one side and use known identities to get to the other side:
`LS={1-sinx}/cosx` multiply by 1+sinx in numerator and denominator
`={1-sinx}/cosx cdot{1+sinx}/{1+sinx}` expand the numerator
`={1-sin^2x}/{cosx(1+sinx)}` use identity `1-sin^2x=cos^2x`
`={cos^2x}/{cosx(1+sinx)}` cancel common factors
`=cosx/{1+sinx}`
`=RS`
The identity has been proved.
Related Questions
- Prove the identity: (cosx/1-sinx) - (cosx/1+sinx) = 2tanx ------------------------------- Thank...
- 1 Educator Answer
- Prove the identity: csc x - cot x = sinx/1+cosx
- 1 Educator Answer
- Verify the identity sinx/(1-cosx)=(1+cosx)/sinx.
- 1 Educator Answer
- Prove the identity sinx/2=squareroot(1-cosx)/2.
- 1 Educator Answer
- Prove the identity (sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4
- 2 Educator Answers