Prove the identity. `(1-cosA+sinA)/(1-cosA)=(1+sinA+cosA)/(sinA)`

Expert Answers info

lemjay eNotes educator | Certified Educator

calendarEducator since 2012

write1,275 answers

starTop subjects are Math and Science

`(1-cosA+sinA)/(1-cosA)=(1+sinA+cosA)/(sinA)`

To prove, let's try to simplify left side. To do so, multiply its numerator and denominator  by the conjugate of 1 - cosA.

`(1-cosA+sinA)/(1-cosA)*(1+cosA)/(1+cosA)=(1+sinA+cosA)/(sinA)`

`(1-cosA+sinA -cosA + cos^2A + sinAcosA)/(1+cosA-cosA - cos^2A)=(1+sinA+cosA)/(sinA)`

`(1 - cos^2A + sinA+ sinAcosA)/(1-cos^2A)=(1+sinA+cosA)/(sinA)`

Then, apply the Pythagorean identity. So `1 - cos^2A = sin^2A` .

`(sin^2A + sinA + sinAcosA)/(sin^2A)=(1+sinA+cosA)/(sinA)`

Factor out the GCF in the numerator.

`(sinA (sinA + 1 +cosA))/(sin^2A)=(1+sinA+cosA)/(sinA)`

Cancel the common factor between the numerator and denominator.

`(sinA + 1 + cosA)/(sinA)=(1+sinA+cosA)/(sinA)`

Then re-writ the left side as:

`(1+ sinA+cosA)/(sinA)=(1+sinA+cosA)/(sinA) (True)`

The simplified form of the left side is the same with the right side. Hence, this proves that the given equation is an identity.

check Approved by eNotes Editorial

Unlock This Answer Now