# Symbolic Logic

## Symbolic Logic (Encyclopedia of Science)

Symbolic logic is the branch of mathematics that makes use of symbols to express logical ideas. This method makes it possible to manipulate ideas mathematically in much the same way that numbers are manipulated.

Most people are already familiar with the use of letters and other symbols to represent both numbers and concepts. For example, many solutions to algebraic problems begin with the statement, "Let x represent. That is, the letter x can be used to represent the number of boxes of nails, the number of sheep in a flock, or the number of hours traveled by a car. Similarly, the letter p is often used in geometry to represent a point. P can then be used to describe line segments, intersections, and other geometric concepts.

In symbolic logic, a letter such as p can be used to represent a complete statement. It may, for example, represent the statement: "A triangle has three sides."

Mathematical operations in symbolic logic

Consider the two possible statements:

"I will be home tonight" and "I will be home tomorrow."

Let p represent the first statement and q represent the second statement. Then it is possible to investigate various combinations of these two statements by mathematical means. The simplest mathematical possibilities are to ask what happens when both statements...

(The entire section is 570 words.)