Asked on

3 Answers | Add Yours

oldnick's profile pic

Posted on (Answer #1)


oldnick's profile pic

Posted on (Answer #2)

This is  graph of function `f(x)=[x-2] +2`  that has zero for  `-1 <= x <= 0`

the set of definition and the range of this function is `RR` 

Note , if we divide the set of definition in open intervall  `I_n=(n; n+1)`  with `n`  integer, `AA x in I_n`  `f'(x)=0`

This means all around set of definition `f(x) `  derivative zero. even tought function isn't costant.

(This is the  clear test against of assertion:  "a funcion with derivative zero all its define set zero is costant")



embizze's profile pic

Posted on (Answer #3)

Given y=[x-1]+2 (Assuming [x] is the greatest intger function):

The greatest integer function returns the greatest integer that is less than or equal to the given input.

For values of x>0 [x] is just the integer part of the number (also called the truncate function or integer function.) e.g. [1.6]=1

For values of x<0 [x] is the integer part minus 1. e.g. [-1.3]=-2

Take the graph of [x], shift it 1 unit to the right and two units up.

The graph of [x] in red, [x-1] in blue, and [x-1]+2 in green:

In tabular form:

`-5<=x<-4 `  y=-4

`-4<=x<-3`  y=-3

`-3<=x<-2`  y=-2



We’ve answered 287,618 questions. We can answer yours, too.

Ask a question