If `y=e^(4x) sin3x` , show that

`(d^2y)/dx^2-8 dy/dx+25y=0`

### 1 Answer | Add Yours

`y=e^(4x) sin3x`

`dy/dx = e^(4x) (cos3x)3+(sin3x)e^(4x)xx4`

`dy/dx = 3e^(4x) cos3x+4y`

` (d^2y)/(dx^2)=3(e^(4x)3(-sin3x)+cos3x*4e^(4x))+4dy/dx`

`(d^2y)/(dx^2) = -9e^(4x)sin3x+4dy/dx-16y+4dy/dx` * [Using ans. of* `dy/dx`]

`(d^2y)/(dx^2) = -9y+8dy/dx-16y`

`(d^2y)/(dx^2)-8dy/dx+25y = 0`

*So the answer is obtained as required.*

**Sources:**

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes