Why the limit does not exist? limx-->0 cot x sec x Topic: Math 1 Answer | Add Yours rcmath | High School Teacher | (Level 1) Associate Educator Posted on March 23, 2012 at 10:17 PM `lim_(x->0)cotxsecx=lim_(x->0)cosx/sinx*1/cosx=` `lim_(x->0)1/sinx=>` `lim_(x->0^+)sinx=+oo` `lim_(x->0^-)sinx=-oo` The graph confirms... `lim_(x->0)cotxsecx=lim_(x->0)cosx/sinx*1/cosx=` `lim_(x->0)1/sinx=>` `lim_(x->0^+)sinx=+oo` `lim_(x->0^-)sinx=-oo` The graph confirms our finding. We’ve answered 302,770 questions. We can answer yours, too. Ask a question

rcmath | High School Teacher | (Level 1) Associate Educator Posted on March 23, 2012 at 10:17 PM `lim_(x->0)cotxsecx=lim_(x->0)cosx/sinx*1/cosx=` `lim_(x->0)1/sinx=>` `lim_(x->0^+)sinx=+oo` `lim_(x->0^-)sinx=-oo` The graph confirms... `lim_(x->0)cotxsecx=lim_(x->0)cosx/sinx*1/cosx=` `lim_(x->0)1/sinx=>` `lim_(x->0^+)sinx=+oo` `lim_(x->0^-)sinx=-oo` The graph confirms our finding.