What is radius of circumscribed circle to triangle ABC if AC = square root 2, angle B= 45?

1 Answer | Add Yours

sciencesolve's profile pic

Posted on

You should know that by the trigonometric law of sine, you may evaluate the radius of circumscribed angle such that:

`(BC)/sinA = (AB)/sin C = (AC)/sinB = 2R`

Notice that the problem provides the length of side AC and the measure of angle B, hence, you should substitute `sqrt2`  for AC and `45^o`  for B such that:

`(sqrt2)/(sin45^o) = 2R`

You should remember that `sin 45^o = sqrt2/2`  such that:

`(sqrt2)/(sqrt2/2) = 2R =gt 1/(1/2)= 2R =gt R = 1`

Hence, evaluating the radius of circumscribed circle yields R=1.

Sources:

We’ve answered 330,827 questions. We can answer yours, too.

Ask a question