Homework Help

What is m if roots of Equation x^3-3x^2-6x+m=0 are arithmetic progression?

mccee's profile pic

Posted via web

dislike 2 like

What is m if roots of Equation x^3-3x^2-6x+m=0 are arithmetic progression?

1 Answer | Add Yours

sciencesolve's profile pic

Posted (Answer #1)

dislike 2 like

You should identify the number of roots of equation, hence, since the equation is of third order, then it has three roots.

The problem provides the information that the roots are members of arithmetic progression such that:

`x_2 = (x_1 + x_3)/2 =gt x_1 + x_3 = 2x_2`

You should use the first Vieta's relations such that:

`x_1+x_2+x_3 = 3`

Substituting `2x_2`  for `x_1 + x_3`  yields:

`2x_2 + x_2 = 3 =gt 3x_2 = 3 =gt x_2 = 1`

You should use the third and second Vieta's relation such that:

`x_1*x_2*x_3 = -m`

Since `x_2 = 1 =gt x_1*x_3 = -m`

`x_1*x_2 + x_1*x_3 + x_2*x_3 = -6`

`x_1 + x_1*x_3 + x_3 = -6`

Using `x_1 + x_3 = 2x_2 =gtx_1 + x_3 = 2 ` yields:

`2 + x_1*x_3 =-6 =gt x_1*x_3 = -6-2 =gt x_1*x_3 = -8`

Notice that the third Vieta's relation states that `x_1*x_3 = -m` , hence`-m = -8 =gt m = 8`

Hence, evaluating m under given conditions yields m=8.

Sources:

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes