What is integral (ln 2 to ln 3) 1/(e^x - 1)dx ?

### 1 Answer | Add Yours

Given definite integral is `int_ln2^ln3(1/(e^x - 1))dx`

`=int_ln2^ln3(e^x-(e^x-1))/(e^x - 1))dx`

`=int_ln2^ln3(e^x)/(e^x-1)dx -int_ln2^ln3(e^x-1)/(e^x-1)dx`

`=int_ln2^ln3(d(e^x-1))/(e^x-1)dx -int_ln2^ln3 1dx`

`[ln(e^x-1)]_(ln2)^(ln3)-[x]_ln2^ln3`

=`[ln(e^(ln3)-1)-ln(e^(ln2)-1)]-[ln3-ln2]`

`=ln(3-1)-ln(2-1)-ln3+ln2`

`=2ln2-ln3`

`=ln4-ln3`

`=ln(4/3)`

**Sources:**

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes