What is the exact value of the sum sin x+0.5=?

1 Answer | Add Yours

giorgiana1976's profile pic

Posted on

To find the value of the sum, we'll create matching functions in the given sum.

For this purpose, we'll substitute the value 0.5 by the equivalent function of the angle pi/6, namely sin pi/6 = 0.5.

We'll transform the sum  into a product.

sin x + 0.5 = sin x + sin pi/6 

sin x + sin pi/6  =  2sin [(x+pi/6)/2]*cos[ (x-pi/6)/2]

sin x + sin pi/6  = 2 sin [(x/2 + pi/12)]*cos[ (x/2 - pi/12)]

sin [(x/2 + pi/12)] = sin (x/2)/2 + [2*sqrt3*cos (x/2)]/4

sin [(x/2 + pi/12)] = sin (x/2)/2 + [sqrt3*cos (x/2)]/2

cos[ (x/2 - pi/12)] = cos(x/2)*cos(pi/12) + sin(x/2)*sin (pi/12)

cos[ (x/2 - pi/12)] =  cos(x/2)/2 + [sqrt3*sin (x/2)]/2

sin x + 0.5 = {[sin (x/2) + sqrt3*cos (x/2)]*[cos(x/2) + [sqrt3*sin (x/2)]}/2

We’ve answered 330,922 questions. We can answer yours, too.

Ask a question