Homework Help

What is the derivative of y=(7e^(3x^2+5x))(x^1/2)?

user profile pic

cm0011 | Student, Undergraduate | eNoter

Posted June 16, 2012 at 7:18 PM via web

dislike 2 like

What is the derivative of y=(7e^(3x^2+5x))(x^1/2)?

1 Answer | Add Yours

user profile pic

thilina-g | College Teacher | (Level 1) Educator

Posted June 16, 2012 at 7:53 PM (Answer #1)

dislike 1 like

` `

`y = 7e^(3x^2+5x) xx sqrt(x)`

We can use the product rule to differentiate this.

`(uv)' = u'v+ uv'`

Let `u = e^(3x^2+5x)`

let `t = (3x^2+5x)`

Then by chain rule,

`(du)/(dx) = (du)/(dt) xx (dt)/(dx)`

`(du)/(dx) = e^t xx (6x+5)`

 

Therfore,

`(dy)/(dx) = 7[e^(3x^2+5x) xx (6x+5) xx sqrt(x) + e^(3x^2+5x) xx (1/2 xx x^(-1/2))]`

`(dy)/(dx) = 7/2[2e^(3x^2+5x) xx (6x+5) xx sqrt(x) + e^(3x^2+5x)/sqrt(x)]`

 This gives,

`(dy)/(dx) = 7/2e^(3x^2+5x)[2(6x+5) xx sqrt(x) + 1/sqrt(x)]`

`(dy)/(dx) = 7/2e^(3x^2+5x)[(2(6x+5) xx x + 1)/sqrt(x)]`

`(dy)/(dx) = 7/2e^(3x^2+5x) xx ((12x^2+5x+1))/sqrt(x)`

 

 

 

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes