What is the derivative of f(x) = e^2x - 2/(1 - e^x)

### 1 Answer | Add Yours

The derivative of `f(x) = (e^(2x) - 2)/(1 - e^x)` has to be determined. Use the quotient rule.

f'(x) = `((e^(2x) - 2)'(1 - e^x) - (e^(2x) - 2)(1 - e^x)')/(1 - e^x)^2`

= `(2*e^(2x)(1 - e^x) - (e^(2x) - 2)(- e^x))/(1 - e^x)^2`

= `(2*e^(2x) - 2*e^(3x) + e^(3x) - 2e^x)/(1 - e^x)^2`

= `(2*e^(2x) - e^(3x) - 2e^x)/(1 - e^x)^2`

= `(e^x*(2e^x - e^(2x) - 2))/(1 - e^x)^2`

**The derivative of `f(x) = (e^(2x) - 2)/(1 - e^x) ` is **`f'(x) = (e^x*(2e^x - e^(2x) - 2))/(1 - e^x)^2`

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes