# What is the antiderivative of functionÂ y=2sinx*cos^3x?

### 1 Answer | Add Yours

The antiderivative of the given function is the primitive function that could be determined calculating the indefinite integral of y.

We'll solve this integral using substitution technique.

Let sin x = t => cos dx = dt

We'll use Pythagorean identity to write (cos x)^2, with respect to (sin x)^2:

(cos x)^2 = 1 - (sin x)^2

We'll get the indefinite integral:

`int` 2sin x*(cos x)^2* cos x dx = 2 `int` sin x*[1 - (sin x)^2]* cos x dx

`int` 2t*(1-t^2)dt = 2`int` t dt - 2 `int` t^3 dt

2 `int` 2t*(1-t^2)dt = 2t^2/2 - 2t^4/4 + C

`int` 2t*(1-t^2)dt = t^2 - t^4/2 + C

`int` 2sin x*(cos x)^2* cos x dx = (sin x)^2 - (sin x)^4/2 + C

**The antiderivative of the given function is the primitive function Y = (sin x)^2 - (sin x)^4/2 + C.**