# What is the answer for question 2) ? http://postimg.org/image/rrpvfng7p/ (Reminder) : This is 1 question.

Posted on

(a) If the divisor is a factor the remainder will be zero.

(b)          x   +   a
---------
x-a   | `x^2-a^2`
`x^2-ax`
-----------
`ax-a^2`
`ax-a^2`
---------
0

(c)            `x^2+ax+a^2`
-----------------
x-a   | `x^3`                 `-a^3`
`x^3-ax^2`
------------
`ax^2`
`ax^2-a^2x`
---------------
`a^2x-a^3`
`a^2x-a^3`
------------
0

(d)           `x^3+ax^2+a^2x+a^3`
----------------------------
x-a |`x^4`                             `-a^4`
`x^4-ax^3`
-----------
`ax^3`
`ax^3-a^2x^2`
---------------
`a^2x^2`
`a^2x^2-a^3x`
---------------
`a^3x-a^4`
`a^3x-a^4`
------------
0

(e) Try x+a as a factor:

`x^2-ax+a^2`
------------------
x+a   | `x^3`                  `+a^3`
`x^3+ax^2`
------------
`-ax^2`
`-ax^2-a^2x`
----------------
`a^2x+a^3`
`a^2x+a^3`
--------------
0

(f) Neither x+a or x-a is a factor.

The sum of two squares does not factor in the real numbers.

We’ve answered 319,443 questions. We can answer yours, too.