Homework Help

Using mathematical induction prove that the sum of the first n integers is n*(n+1)/2.

user profile pic

ballwall99 | Student, College Freshman | (Level 3) eNoter

Posted October 8, 2010 at 10:45 AM via web

dislike 0 like
Using mathematical induction prove that the sum of the first n integers is n*(n+1)/2.

2 Answers | Add Yours

user profile pic

william1941 | College Teacher | (Level 3) Valedictorian

Posted October 8, 2010 at 1:11 PM (Answer #1)

dislike 2 like

Let us express the formula as: 1+2+3…n = n*(n+1)/2

As we are supposed to prove it using mathematical induction, we have to prove that it is true for n = 1 and that if it is true for n we can show that it is true for n+1.

First for n=1. The sum = 1*2/2=1 . So it is true.

Now given  that 1+2+3..n= n*(n+1)/2 we have to show that 1+2+3…(n+1)= (n+1)*(n+2)/2

If 1+2+3..n= n*(n+1)/2

=> 1+2+3…(n+1) =[ n*(n+1)/2] + n+1

= (n^2 +n)/2 + 2(n+1)/2

= (n^2 +n +2n +2 )/2

=(n^2 + 2n +n+2)/2

=[n(n+2) +1(n+2)]/2

=(n+1)*(n+2)/2

So we prove that the expression is true for n+1 given that it is true for n.

Hence by mathematical induction the formula for the sum of the first n numbers is given as n*(n+1)/2 has been proved.

user profile pic

neela | High School Teacher | (Level 3) Valedictorian

Posted October 8, 2010 at 11:20 AM (Answer #2)

dislike 0 like

We presume the formula Sn = n(n+1)/2 is true for the sum of first n natural numbers only.

Now we use the same formula to find the sum of the first n+1 natural numbers.

Then Sn+1 = Sn  + (n+1)  =  n(n+1)/2  +(n+1).

Sn+1 =  n(n+1)/2  + 2(n+1)/2

Sn+1  = {(n+1)/2} {n+2}

Sn+1 = (n+1)(n+2)/2

Sn+1 = (n+1)[(n+1)+1]/2. So it is as good as substituting n+1 in place of n in the formula Sn = n(n+1)/2.

Therefore if Sn = n(n+1)/2 is true for n , then Sn+1 = (n+1)(n+2)/2 is also true for n+1.

Now we take  S1 = 1 obviously. S1 = 1(1+1)/2 = 1 is true  by formula.

So S1 =1(1+1)/2 is true. S2 = 2(2+1)/2 true by induction. So Sn = n(n+1)/2 is true for all n.

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes