# Using the chain rule, differentiate the function f(x)=square root(5+16x-(4x)squared).  what is the derivative of the square root?

hala718 | High School Teacher | (Level 1) Educator Emeritus

Posted on

f(x) = sqrt(5+16x - (4x)^2)

f(x) = sqrt(5+16x-16x^2)

Now let us factor:

f(x) = sqrt(-4x +5)(4x+1)

= sqrt(-4x+5)*sqrt(4x+1)

Then, let f(x) = u*v

u= sqrt(-4x+5)  ==> u' = -2/sqrt(-4x+5)

v= sqrt(4x+1) ==>  v'= 2/sqrt(4x+1)

==> f'(x) = u'v + uv'

= -2*sqrt(4x+1)/sqrt(-4x+5) + 2*sqrt(-4x+5)/sqrt(4x+1)

= [-2(4x+1) + 2(-4x+5)]/sqrt(-4x+5)(4x+1)

= (-8x -2 -8x +10)/sqrt(5+16x-4x^2)

= (-16x +8)/sqrt(5+16-4x^2)

f'(x)   = -8(x-2)/sqrt(5+16x-4x^2)

krishna-agrawala | College Teacher | (Level 3) Valedictorian

Posted on

As per chain rule of differentiation:

dy/dx = (dy/du)(du/dv)(dv/dx)

Where:

y = f(u)

u = f(v) and

v = f(x)

To differentiate the given function using this rule we proceed as follows.

Given:

y = [5 + 16x - (4x)^2]^1/2

Let:

u = 5 + 16x - (4x)^2

v = 4x

Then:

y = f(u) = u^1/2 and

u = f(v) = 5 + 4v - v^2

dy/du = (1/2)u^(-1/2)

= (1/2)(5 + 4v - v^2)^(-1/2)

= (1/2)[5 + 16x - (4x)^2]^(-1/2)

= (1/2)[5 + 16x - 16x^2]^(-1/2)

du/dv = 4 - 2v

= 4 - 8x

dv/dx = 4

Then we calculate derivative of given expression as:

dy/dx = (dy/du)(du/dv)(dv/dx)

= {(1/2)[5 + 16x - (4x)^2]^(-1/2)}(4 - 8x)4

= 16(1 - 2x){(1/2)[5 + 16x - (4x)^2]^(-1/2)}

= 16(1 - 2x){(1/2)[5 + 16x - (4x)^2]^(-1/2)}

= 8(1 - 2x)(5 + 16x - 16x^2)^(-1/2)

giorgiana1976 | College Teacher | (Level 3) Valedictorian

Posted on

To differentiate the function, we'll have to calculate the derivative of the expression under the square root and, after that, we'll differentiate the square root.

We'll note sqrt(5+16x-4x^2) = u(v(x))

Where u(v) = sqrt v

v(x) = (5+16x-4x^2)

Now, we'll differentiate v(x), with respect to x:

v'(x) = (5+16x-4x^2)'

v'(x) = (5)' + (16x)' - (4x^2)'

v'(x) = 0 + 16 - 8x

v'(x) = 16-8x

u(v(x))' = (sqrt v)' = v'(x)/2sqrt v

But u(v(x)) = f(x) =>

f'(x) = (16-8x)/2sqrt(5+16x-4x^2)

f'(x) = 8(2-x)/2sqrt(5+16x-4x^2)

f'(x) = (2-x)/sqrt(5+16x-4x^2)

f'(x) = (2-x)sqrt(5+16x-4x^2)/(5+16x-4x^2)

neela | High School Teacher | (Level 3) Valedictorian

Posted on

To find the drivative of y = sqrt(5+16x-4x^2)

d/dxf(u) = {d/duf(u) }{du/dx}.

dy/dx  =  d/du {u^(1/2} {du/dx} , where u = 5+16x-x^2.

dy/dx = {(1/2)(5+16x-5x^2) ^(1/2-1) }d/dx{5+16x-x^2}

dy/dx = (1/2){5+16x-x^2}^(-1/2)*{16-2x}

dy/dx = (16-2x)/{2sqrt(5+16x-x^2)}