Use special products to expand and simplify: 5x^m(x^(m+1) + 3)^2Show solution and explain the answer.

1 Answer | Add Yours

sciencesolve's profile pic

Posted on

You need to expand binomial `(x^(m+1) + 3)^2`  using the formula `(a+b)^2 = a^2 + 2ab + b^2`  such that:

`(x^(m+1) + 3)^2 = (x^(m+1))^2 + 2*3*x^(m+1) + 3^2`

`(x^(m+1) + 3)^2 = (x^(2m+2)) + 6x^(m+1) + 9`

You need to multiply the expanded binomial by `5x^m`  such that:

`5x^m*(x^(m+1) + 3)^2 = 5(x^m*x^(2m+2)) + 30x^m*x^(m+1) + 45x^m`

`5x^m*(x^(m+1) + 3)^2 = 5(x^(m+2m+2)) + 30x^(m+m+1) + 45x^m`

`5x^m*(x^(m+1) + 3)^2 = 5(x^(3m+2)) + 30x^(2m+1) + 45x^m`

Hence, simplifying the product yields  `5x^m*(x^(m+1) + 3)^2 = 5(x^(3m+2)) + 30x^(2m+1) + 45x^m` .

We’ve answered 319,636 questions. We can answer yours, too.

Ask a question