Use the fundamental theorem of calculus to find

d/dx integral from (-x)^x [z-1]/[z+2] dz

(-x) is suppose to be on the bottom and (x) is suppose to be on the top.

Also, please split the integral to two integrals each of which will have only one limit that varies.

I geuss you can call it the early stages of the Fundamental Theorem. We haven't learned more about it yet.

### 1 Answer | Add Yours

You need to evaluate the definite integral using the linearity of integral such that:

`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x z/(z + 2)dz - int_(-x)^x 1/(z+2) dz`

`int_(-x)^x z/(z + 2)dz = int_(-x)^x (z+2-2)/(z + 2)dz`

`int_(-x)^x z/(z + 2)dz = int_(-x)^x (z + 2)/(z + 2)dz - int_(-x)^x 2/(z + 2)dz`

`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x (z + 2)/(z + 2)dz - int_(-x)^x 2/(z + 2)dz - int_(-x)^x 1/(z+2) dz`

`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x dz - int_(-x)^x 3/(z + 2)` `dz`

` int_(-x)^x (z - 1)/(z + 2) dz = z|_(-x)^x - 3ln|z + 2||_(-x)^x`

`int_(-x)^x (z - 1)/(z + 2) dz = (x + x) - 3(ln|x+2| - ln|2-x|)`

`int_(-x)^x (z - 1)/(z + 2) dz = 2x - ln|(x+2)/(2-x)|^3`

**Hence, evaluating the definite integral yields `int_(-x)^x (z - 1)/(z + 2) dz = 2x - ln|(x+2)/(2-x)|^3.` **

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes