Homework Help

Two loudspeakers separated by 3.0 meters emit out-of-phase sound waves. Both speakers...

user profile pic

masterpiece11 | Student | Salutatorian

Posted March 16, 2013 at 8:12 PM via web

dislike 0 like

Two loudspeakers separated by 3.0 meters emit out-of-phase sound waves. Both speakers are playing a 686 Hz tone. If you are standing 4.0 meters directly in front of one of the loudspeakers. Do you hear maximum sound intensity, minimum sound intensity, or something in between? Justify.

1 Answer | Add Yours

user profile pic

valentin68 | College Teacher | (Level 3) Associate Educator

Posted October 16, 2013 at 3:03 PM (Answer #1)

dislike 0 like

Let us suppose the loudspeaker A emits waves with initial phase zero, and loudspeaker B emits waves with initial phase `phi` . See the figure below. Thus they emit out of phase sounds.

`Y_A(x_1,t) = A*sin(2*pi*(x_1/lambda -t/T))`    (1)

`Y_B(x_2,t) = A*sin(2*pi(x_2/lambda-t/T) +fi)`  (2)

Because both loudspeakers emit the same tone `F =686 Hz` the period of both waves is `T =1/F =0.00146s =1.46 ms`

and the wavelength is `lambda = v*T =343*0.00146 =0.5 m`

(speed of sound in air at 20 degree Celsius is `v =343 m/s` )

The path difference between the two waves coming from A and B is

`P =(x_1-x_2)= sqrt(D^2+d^2) -D =sqrt(16+9) -4 =5-4 =1m`

Therefore the difference in paths is an integer multiple of lambda.

`P =2*lambda`

Now, looking at expressions (1) and (2), at the same moment in time there are three different cases:

a) if `phi =2*k*pi` with `k` integer (including zero) then a person at point C will hear a maximum sound intensity.

b) if `phi=(2*k+1)*pi/2` , with `k` integer (including zero) then a person at point C will hear a minimum of sound intensity

c) for other dephasing between the two loudspeakers the person at point C will hear an intermediate sound intensity between maxima and minima.

Answer: Unless special out of phase conditions of points a) and b) above, the person will hear something between maxima and minimum intensity.

Images:
This image has been Flagged as inappropriate Click to unflag
Image (1 of 1)

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes