There is a leak in the Rein's roof. This leak must be fixed by the time the 500th tain drop falls through the roof. The leak allows 2 drops to go through the roof on the 1st day, 4 drops through on...

Topic:

Math

There is a leak in the Rein's roof. This leak must be fixed by the time the 500th tain drop falls through the roof. The leak allows 2 drops to go through the roof on the 1st day, 4 drops through on the second day, 8 drops through on the third day, and so on. On what day will the 500th drop fall through the roof

Asked on

3 Answers | Add Yours

steveschoen's profile pic

Posted on

I agree with the 7.97.  I checked my Excel table and saw an error.  I attached a correct table here.  It shows during the 8th day.  Sorry.

Images:
This image has been Flagged as inappropriate Click to unflag
Image (1 of 1)
mjripalda's profile pic

Posted on

In the problem, the number of drops for the first three days are 2, 4, and 8.

Notice that the number of drops forms a sequence. So, our next step is to determine if it is an arithmetic or geometric sequence. Since 2, 4 and 8 are all divisible by 2, then it is possible that this is a geometric sequence. To verify, determine if the consecutive numbers have common ratio.

To do so, apply the formula:

`r =a_n/a_(n-1)`

`r=a_3/a_2 =8/4=2`

`r=a_2/a_1=4/2=2`

Since the value of r's are the same, hence, the number of drops form a geometric sequence.

That means, to determine nth day when 500th rain drops on the leak, apply the formula of sum of geometric sequence.

`S_n=(a_1(1 - r^n))/(1-r)`

So, plug-in `S_n=500` , `a_1=2`  and `r=2` .

`500=(2(1-2^n))/(1-2)`

Then, simplify the equation.

`500=(2(1-2^n))/(-1)`

`500=-2(1-2^n)`

`-250=1-2^n`

`-251=-2^n`

`251=2^n`

And, take the natural logarithm of both sides to remove the n in the exponent.

`ln 251=ln2^n`

`ln251=nln2`

`(ln251)/(ln2)=n`

`7.97=n`

Rounding off to the nearest whole number, the value of n becomes:

`8=n`

Hence, the 500th rain drops on the 8th day.

jsqueek12's profile pic

Posted on

Thank you everyone you been so help full 

We’ve answered 301,043 questions. We can answer yours, too.

Ask a question