# solve if the given series converges or diverges Sum(upper^infinity, lower n=1) (-2)^n/n^2

### 1 Answer | Add Yours

Determine if `sum_(n=1)^(oo) ((-2)^n)/n^2` converges or diverges.

We apply the ratio test: if `lim_(n->oo)|(a_(n+1))/a_n|<1` then the series converges.

`lim_(n->oo)|(((-2)^(n+1))/((n+1)^2))/(((-2)^n)/n^2)|`

`=lim_(n->oo)|(((-2)^(n+1))/((n+1)^2) * n^2/((-2)^n))|`

`lim_(n->oo)|(-2)/(1+2/n+1/n^2)|`

`=2`

**Since 2>1, the series diverges.**

----------------------------------

The finite values of the series oscillate between increasingly negative and positive values:

`-2,-1,-1.bar(8),-.bar(8),-2.17,-.39,-3,.99,-5.32,4.92,-12,16.43,...`

**Sources:**