Solve the equations:

x + y = 1

x^2 + 4y = 18

### 2 Answers | Add Yours

We have to solve x + y = 1 and x^2 + 4y = 18

x + y = 1

=> x = 1 - y

substitute in x^2 + 4y = 18

=> (1 - y)^2 + 4y = 18

=> 1 + y^2 - 2y + 4y = 18

=> y^2 + 2y - 17 = 0

y1 = -2/2 + sqrt (4 + 68)/2

=> -1 + 3*sqrt 2

y2 = -1 - 3*sqrt 2

x1 = 2 - 3*sqrt 2

x2 = 2 + 3*sqrt 2

**The solution of the equations are (2 - 3*sqrt 2, -1 + 3*sqrt 2) and (2 + 3*sqrt 2, -1 - 3*sqrt 2)**

x + y = 1

y=x+1

`x^2 + 4(x+1) = 18 `

`x^2+4x+1=18 `

`x^2+4x+1-18=18-18 `

`x^2+4x-17=0 `

`x^2+4x=17 `

`(-b/2)^2 `

`4/2=2^2=4 `

`x^2+4x+4=17-4 `

`x^2+4x+4=13 `

`(x+2)^2=13 `

`x+2=sqrt(13) `

`x=-2+-sqrt(13) `

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes