Homework Help

Solve algebraically: `2sinxcosx=cosx` Solve algebraically: `sinx/2=sinx/3` solve...

user profile pic

alejandrogalarce | Student, Undergraduate | (Level 1) Valedictorian

Posted August 2, 2013 at 7:07 PM via web

dislike 1 like

Solve algebraically: `2sinxcosx=cosx`

Solve algebraically: `sinx/2=sinx/3`

solve algeibraically:`cscx/5+cscx/3=16/15`

1 Answer | Add Yours

user profile pic

embizze | High School Teacher | (Level 1) Educator Emeritus

Posted August 2, 2013 at 7:51 PM (Answer #1)

dislike 1 like

(1) 2sinxcosx=cosx 

** Do not divide by cosx; you may lose a root **


cosx(2sinx-1)=0 By the zero product property:

cosx=0 ==> `x=pi/2+npi,n in ZZ` (n an integer)

`2sinx-1=0 ==> sinx=1/2 ==> x=pi/6+2npi,x=(5pi)/6+2npi` So the solutions are `x=pi/2+npi,x=pi/6+2npi,x=(5pi)/6+2npi`

(2) `(sinx)/2=(sinx)/3`



sinx=0 ==> `x=npi`

(3) `(cscx)/5+(cscx)/3=16/15`



`cscx=2==> sinx=1/2`

`=> x=pi/6+2npi,x=(5pi)/6+2npi`

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes