# Simplify. (y^x times y^-x)^4

### 2 Answers | Add Yours

You need to use the exponential laws, that helps you to evaluate the given exponential expression``, such that:

`y^x*y^(-x) = y^(x + (-x)) => y^x*y^(-x) = y^0 => y^x*y^(-x) = 1`

Raising to 4th power, yields:

`(y^x*y^(-x))^4 = 1^4 => (y^x*y^(-x))^4 = 1`

**Hence, performing the indicated operations, using the exponentials laws, yields `(y^x*y^(-x))^4 = 1` .**

we know this law of exponent.

`x^m xx x^n=x^(m+n) , `

`x^0=1 `

So and " times mean multiply "

`(y^x xx y^-x)^4=(y^(x-x))^4`

`=(y^0)^4`

`=1^4`

`=1`