Simplify. `root(4)(32x^11y^15)/root(4)(2x^3y^2)`   ` ` 

2 Answers | Add Yours

pramodpandey's profile pic

pramodpandey | College Teacher | (Level 3) Valedictorian

Posted on

 We know

`x^m/y^m=(x/y)^m`

Thus apply this rule

`root(4)(32x^11y^15)/root(4)(2x^3y^2)=root(4)((32x^11y^15)/(2x^3y^2))`

`=(16x^(11-3)y^(15-2))^(1/4)`

`=(2^4x^8y^13)^(1/4)`

`=(2^4)^(1/4)(x^8)^(1/4)(y^13)^(1/4)`

`=2x^2y^3(y)^(1/4)`

`` 

oldnick's profile pic

oldnick | (Level 1) Valedictorian

Posted on

`root(4)(32x^11y^15)/root(4)(2x^3y^2)=` `root(4)((32x^11y^15)/(2x^3y^2))` `=root(4)(16x^8y^13)` `=root(4)(2^4(x^2)^4 (y^3)^4 y)` `=2x^2y^3root(4)(y)`

We’ve answered 333,793 questions. We can answer yours, too.

Ask a question