Show algebraically that G'(x) = F'(x). Let `G(x)= 2sin^(-1)((sqrt(x))/2)` Let `F(x) = sin^(-1)((x-2)/2)` Please show every single step, without using any shortcuts  

1 Answer | Add Yours

lemjay's profile pic

lemjay | High School Teacher | (Level 2) Senior Educator

Posted on

`G(x)= 2 sin^(-1) (sqrtx/2)`


To show that G'(x)=F'(x), determine the derivative of each given function. Use the formula:

`d/(du) sin^(-1)u = 1/sqrt(1-u^2)*u'`

So, the derivative of G(x) is:

`G(x)=2sin^(-1) (sqrtx/2)`

`G'(x) =2*1/sqrt(1-(sqrtx/2)^2)* (sqrtx/2)'`



To simplify, use the rule of  radicals which is `root(n)(x)*root(n)(y) = root(n)(x*y)` .


And, the derivative of F'(x) is:


`F'(x)=1/sqrt(1-((x-2)/2)^2) *((x-2)/2)'`



Substituting the derivative of the two functions to G'(x) = F(x) yields:


`1/sqrt(x(4-x)) = 1/sqrt(x(4-x))`         (True)

Hence this prove that G'(x)=F'(x) .

We’ve answered 317,895 questions. We can answer yours, too.

Ask a question