Homework Help

Prove the identity: (tan^2A)/(1+tan^2A) + (cot^2A)/(1+cot^2A)=(1-2sin^2A...

lbawa's profile pic

Posted via web

dislike 0 like

Prove the identity:

(tan^2A)/(1+tan^2A) + (cot^2A)/(1+cot^2A)=(1-2sin^2A cos^2A)/(sinAcosA)

1 Answer | Add Yours

justaguide's profile pic

Posted (Answer #1)

dislike 0 like

The identity that has to be proved is:

(tan A)^2/(1+ (tan A)^2) + (cot A)^2/(1+(cot A)^2) = (1- 2(sin A)^2 (cos A)^2)/(sin A)(cos A)

Starting with the left hand side:

(tan A)^2/(1+ (tan A)^2) + (cot A)^2/(1+(cot A)^2)

use cot A = 1/(tan A)

=> (tan A)^2/(1+ (tan A)^2) + (1/tan A)^2/(1+(1/tan A)^2)

=> (tan A)^2/(1+ (tan A)^2) + (1/tan A)^2/[(1 + (tan A)^2)/(tan A)^2)]

=> (tan A)^2/(1+ (tan A)^2) + (tan A)^2)(1/tan A)^2/(1 + (tan A)^2)

=> (tan A)^2/(1+ (tan A)^2) + 1/(1 + (tan A)^2)

=> ((tan A)^2 + 1)/(1+ (tan A)^2)

=> 1

Now the right hand side

(1- 2(sin A)^2 (cos A)^2)/(sin A)(cos A)

=> 1/(sin A)(cos A) - 2*(sin A)(cos A)

The right hand side does not equal 1. So the left hand side and the right hand side are not equal.

The given expression is not an identity.

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes