Homework Help

Prove the identity (sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4

agneslund's profile pic

Posted via web

dislike 3 like

Prove the identity (sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4

3 Answers | Add Yours

giorgiana1976's profile pic

Posted (Answer #1)

dislike 3 like

For the beginning, we'll manipulate the right side, only.

[(sin x)^2]^2 - [(cos x)^2]^2 = [(sin x)^2 - (cos x)^2][(sin x)^2 + (cos x)^2]

But, (sin x)^2 + (cos x)^2 = 1 (Pythagorean identity)

[(sin x)^2]^2 - [(cos x)^2]^2 = [(sin x)^2 - (cos x)]^2

We notice that we've get the difference of squares from the left side:

[(sin x)^2 - (cos x)]^2 = [(sin x)^2 - (cos x)]^2

mathsworkmusic's profile pic

Posted (Answer #2)

dislike 3 like

A simpler way to see what is going on in this equation is to redefine the essential terms. Specifically, let

(sinx)^2 = r

(cosx)^2 = s

The equation can then be written as

r - s = r^2 - s^2

We can then use the method of factorizing the difference of two squares, namely

r^2 - s^2 = (r - s)(r + s)

Note that the 'cross terms' rs and -rs cancel each other out.

Therefore we can now write the equation as

r - s = (r - s)(r + s)

From the (Pythagorean, or, unit circle) trigonometric identity  (sinx)^2 + (cosx)^2 = 1  we have that

r + s = 1

Our equation then can be written as

r - s = (r - s) x 1

that is

r - s = r - s

As this holds as true, we see that the original equation does indeed hold true.

NB If you plot (sinx)^2 + (cosx)^2 on a graph the identity (sinx)^2 + (cosx)^2 = 1 is apparent as the curves are perfectly symmetric in the line y = 1/2

(sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4

Sources:

gsenviro's profile pic

Posted (Answer #3)

dislike 1 like

consider the identity, `x^2 -y^2 = (x-y)(x+y)`.

using the same on the right hand side of the equation, we get:

`(sinx)^4 - (cosx)^4 = [(sinx)^2 - (cosx)^2)].[(sinx)^2 + (cosx)^2)]`

Using the identity, `(sinx)^2 + (cosx)^2) = 1`, this equation simplifies to:

`(sinx)^4 - (cosx)^4 = [(sinx)^2 - (cosx)^2)].[(sinx)^2 + (cosx)^2)] = (sinx)^2 - (cosx)^2)`

which is the same as the left hand side of the equation. and hence proved.

In general, for this type of mathematical problems, its always ideal to start by one side of the equation (either LHS or RHS, i.e. left hand side or right hand side) and simplifying it. Use of identities, if applicable, helps in simplification process. and finally we get the two sides as equal to each other, i.e., the requisite answer.

Good luck.

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes