A particle projected horizontally with a speed `sqrt2gT` , from a height h above the ground,where T is a constant, moves under gravity. If the particle is at a distance (3/2) gT^2 from the point...

A particle projected horizontally with a speed `sqrt2gT` , from a height h above the ground,where T is a constant, moves under gravity.

If the particle is at a distance (3/2) gT^2 from the point of projection, When it falls to the ground, show that, using the speed-time graphs, the time taken by the particle to reach the ground is T, and h=(1/2)gT^2.

Asked on

1 Answer | Add Yours

jeew-m's profile pic

Posted on

It is given that the particle is at a distance `(3/2) gT^2` from the point of projection, When it falls to the ground.

Area of the horizontal velocity time graph `= sqrt2gTxxt`

Horizontal distance travelled by the graph `= sqrt2gTxxt`

For the vertical velocity time graph;

`h = (0+g(t))/2xxt`

`h = g(t^2)/2`

Now we got that `h = g(t^2)/2` ,horizontal distance travelled by the particle is `sqrt2gTxxt` and when the particle hit the ground it is `3/2gT^2` from the point of projection. These three forms a pythogorous triangle.

`(g(t^2)/2)^2+(sqrt2gTxxt)^2 = (3/2gT^2)^2`

`t^4/4+2T^2t^2 = 9/4T^4`

`t^4+8T^2t^2-9T^4 = 0`

`t^4+9T^2t^2-T^2t^2-9T^4 = 0`

`t^2(t^2+9T^2)-T^2(t^2+9T^2) = 0`

`(t^2-T^2)(t^2+9T^2) = 0`

`(t-T)(t+T)(t^2+9T^2) = 0`

Since T is constant and t is positive;

`t = T`

`h = gT^2/2`

So the answers are proved.

Sources:

1 reply Hide Replies

jeew-m's profile pic

Posted on

Reffered images

Images:
This image has been Flagged as inappropriate Click to unflag
Image (1 of 2)
This image has been Flagged as inappropriate Click to unflag
Image (2 of 2)

We’ve answered 327,758 questions. We can answer yours, too.

Ask a question