# list the intercepts & test for symmentry y=4x/(x^2+4)

### 1 Answer | Add Yours

List the intercepts and test for symmetry `y=(4x)/(x^2+4)`

(1) If x=0y=0 so **the y-intercept is 0**

(2) If y=0 x=0 so **the x-intercept is 0**

`(4x)/(x^2+4)=0` The denominator is positive, so `4x=0==>x=0`

(3) If we replace x with (-x) we get `y=(-4x)/((-x)^2+4)=(-4x)/(x^2+4)` which is not the same so **there is no symmetry about the y-axis.**

If we replace y with (-y) we get `-y=(4x)/(x^2+4)==>y=(-4x)/(x^2+4)` Again this is not the same so **there is no symmetry about the x-axis.**

If we replace x with (-x), y with (-y) we get:

`-y=(4(-x))/((-x)^2+4)==>-y=(-4x)/(x^2+4)` Multiplying both sides by (-1) we get `y=(4x)/(x^2+4)` which is the same. **The function is symmetri about the origin.**

The graph:

**Sources:**