# Let f(x)=(sqrt x)-2/(sqrt x)+2 and f'(4)=? would be?

### 1 Answer | Add Yours

Find `f'(4)` if `f(x)=(sqrt(x)-2)/(sqrt(x)+2)` :

Write as `f(x)=(x^(1/2)-2)/(x^(1/2)+2)` then use the quotient rule: `(f/g)'=(gf'-fg')/g^2`

`f'(x)=((x^(1/2)+2)(1/2)(x^(-1/2))-(x^(1/2)-2)(1/2)(x^(-1/2)))/(x^(1/2)+2)^2=(2x^(-1/2))/(x^(1/2)+2)^2`

Then `f'(4)=(2/sqrt(4))/(sqrt(4)+2)^2=1/16`

------------------------------------------------------------------

`f'(4)=1/16`

----------------------------------------------------------------