Homework Help

How to solve the  indefinite integral of  `(2x^2 +20x+44)/ (x^2 +7x+ 12)` ? `int(2x^2...

user profile pic

smartguy2323 | (Level 1) Honors

Posted May 31, 2013 at 8:35 PM via web

dislike 1 like

How to solve the  indefinite integral of  `(2x^2 +20x+44)/ (x^2 +7x+ 12)` ?

`int(2x^2 +20x+44)/ (x^2 +7x+ 12)dx`

1 Answer | Add Yours

user profile pic

mjripalda | High School Teacher | (Level 1) Senior Educator

Posted June 1, 2013 at 12:30 AM (Answer #1)

dislike 1 like

`int(2x^2 +20x+44)/ (x^2 +7x+ 12)dx`

Since both numerator and denominator have a degree of 2, we may simplify the integrand by dividing them.


`x^2+7x+12``bar(| 2x^2+20x+44)`

                   `-`  `2x^2+14x+24`  


                                      `6x + 20`

So the integral becomes:

`int(2x^2 +20x+44)/ (x^2 +7x+ 12)dx= int(2 + (6x+20)/(x^2+7x+12))dx`

Since the integrand is sum of two functions, then it can be express as sum of two integrals.

`= int 2dx + int (6x+20)/(x^2+7x+12) dx`

For the first integral, apply the formula `int kdx=kx+C` .

`= 2x+C+ int(6x+20)/(x^2+7x+12)dx`

For the second integral, since the degree of numerator is less than that of denominator, expand the integrand using partial fractions.

So, factor the denominator and express it as two fractions.


Then, determine the values of A and B. To do so, multiply both sides by the LCD.



To solve for A, set x=-3,




And to solve for B, set x=-4.





Hence, the second integral becomes:

`2x+C+ int(6x+20)/(x^2+7x+12)dx`


Again, express the integral as sum of two integrals.

`=2x+C+int2/(x+3)dx + int4/(x+4)dx`

`= 2x+ C +2int 1/(x+3)dx+4int1/(x+4)dx`

Then, apply the formula `int 1/u du = ln u + C` .


Since C represents any number, we can represent the sum of the three C's as C only.

`=2x+2ln(x+3)+ 4ln(x+4)+C`


`int(2x^2 +20x+44)/ (x^2 +7x+ 12)=2x+2ln(x+3)+ 4ln(x+4)+C` .

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes