Homework Help

How to prove trig identity (sin3x/sinx)-(cos3x/cosx)=2  

sunithasrivastava's profile pic

Posted via web

dislike 3 like

How to prove trig identity



2 Answers | Add Yours

oldnick's profile pic

Posted (Answer #1)

dislike 2 like

`(sin3x)/sinx - (cos3x)/cosx=2`



`sin(3x-x)= sin2x`

`sin2x= sin 2x`

jeew-m's profile pic

Posted (Answer #2)

dislike 1 like


`= [sin(3x)cosx]/(sinxcosx)-[cos(3x)sinx]/(sinxcosx)`

`= (sin(3x)cosx-cos(3x)sinx)/(sinxcosx)`


We know that;

`sin2A = 2sinAcosA`

`sinAcosA= 1/2sin2A`


`sin(A-B) = sinAcosB-cosAsinB`


`A = 3x`

`B = x`



`sin(3x-x) = sin3xcosx-cos3xsinx`

`sin2x = sin3xcosx-cos3xsinx`


Therefore we can say;


`= (sin(3x)cosx-cos(3x)sinx)/(sinxcosx)`

`= (sin(2x))/(1/2sin2x)`

`= 2`


So the identity is proved.

`sin(3x)/sinx-cos(3x)/cosx = 2`



Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes