Homework Help

How to prove a^2-b^2=(a-b)(a+b)

rahulsk's profile pic

Posted via web

dislike 0 like

How to prove a^2-b^2=(a-b)(a+b)

3 Answers | Add Yours

Top Answer

dylee's profile pic

Posted (Answer #1)

dislike 1 like

____________________
|              |                  |
|              |                  |
|              |                  | 
|              |                  |
|--------- |                  |
|                                 |
|                                 |
|                                 |
|                                 |
____________________  (Sorry for the poor drawing....)

Imagine that there are two squares overlapped like that
Let the one side of big square be a, and the side of small square be b.

If we subtract 'b^2 from 'a^2, this would mean subtracting the area of small square from the big square.

Therefore, the result of 'a^2 - 'b^2 would be equal to he remaining area. The remaining area is 'a*(a-b) + 'b*(a-b) = (a+b)*(a-b)

 

'a^2-'b^2 = '(a+b)*(a-b)

 

justaguide's profile pic

Posted (Answer #2)

dislike 0 like

It can be proved that a^2 - b^2 = (a - b)(a + b) by multiplying the terms on the right.

Multiply (a - b)(a + b) by opening the brackets

=> a*a + a*b - b*a - b^2

=> a^2 + ab - ab - b^2

=> a^2 - b^2

This proves that a^2 - b^2 = (a - b)(a + b)

rahulsk's profile pic

Posted (Answer #6)

dislike 0 like

Nice!! I atleast understood it.

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes