# How many solutions are there to eq x^2-13=0?

### 1 Answer | Add Yours

Since the number of solutions to a polynomial equation is equal to the highest power of variable `x` , yields that the number of solutions to a quadratic equation is maximum 2, either both reals, or both imaginaries.

You should solve the equation to prove that there exists two real solutions, such that:

`x^2 - 13 = 0 => x^2 = 13 => x_(1,2) = +-sqrt 13`

**Hence, evaluating the number of solutions to the quadratic equation yields that there exists two real solutions, **`x = sqrt 13, x = -sqrt 13.`