# How long does it take to reach its highest point? Answer in units of s. What is velocity when it returns to the level from which it started? ans. m/sA ball is thrown vertically upward with a speed...

How long does it take to reach its highest point? Answer in units of s. What is velocity when it returns to the level from which it started? ans. m/s

A ball is thrown vertically upward with a speed of 26.3 m/s.

### 2 Answers | Add Yours

The equation for the velocity for the ball thrown vertically :

v= u+at, where u is the initial velocity a is the retardartion due gravitional acceleration, and t is the time of the motion.

At the highest point the velocity v of the ball is zero.

Therefore, 0=26.3-9.8t or 9.8t=26.3. Therefore, t= 26.3/9.8=2.6837 is the time to reach the heighest point.

The height reached s= ut-(1/2)gt^2 = 26.3(26837)-(1/2)(9.8)(2.6837^2)=35.2903m

Returning tothe ground:

Initial velocity u= 0, final velocity v to be found and acceleraion is the acceleration due to gravitation.The height s=35.2903m

We know that v^2-u^2= 2as

v= sqrt(2as)= sqrt(2*9.8*35.2903)=26.3 m/s towards the earth. It is equival in magnitude to the starting velocity but opposite in direction.

The ball reaches its highest point when the velocity becomes 0 under the influence of gravity.

Therefore time taken to reach highest point = (initial velocity)/acceleration

= 26.3/9.81 = 2.6809 seconds.

The velocity when it returns to the original is point is exactly equal and opposite of initial velocity.

Thus velocity when ball returns to starting point = -26.3 m/s