How do you simplify this exponential expression?The expression is: (64x^2)^-1/6(32x^5)-2/5

2 Answers | Add Yours

Top Answer

embizze's profile pic

embizze | High School Teacher | (Level 1) Educator Emeritus

Posted on

Simplify `(64x^2)^(-1/6)(32x^5)^(-2/5)` :

First use the power of a product rule: `(ab)^m=a^mb^m`


Now use the power to a power rule: `(a^m)^n=a^(mn)`



`64^(-1/6)=1/(64^(1/6))=1/2` using the negative exponent rule. (Also, `64^(1/6)=root(6)(64)=2` )

`32^(-2/5)=1/(32^(2/5))=1/(2^2)=1/4` using the negative exponent rule and `32^(2/5)=(32^(1/5))^2=2^2=4`


So, using the commutative property of multiplication,we have:


Use the product of powers rule: `a^m*a^n=a^(m+n)`

`1/8x^(-7/3)` Again using the negative exponent rule we have:


The simplified form of `(64x^2)^(-1/6)(32x^5)^(-2/5)` is `1/(8x^(7/3))`

tonys538's profile pic

tonys538 | Student, Undergraduate | (Level 1) Valedictorian

Posted on

The expression `(64x^2)^(-1/6)*(32x^5)^(-2/5)` has to be simplified.

Use the relations:

`(x^a)^b = x^(a*b)`

`x^a*x^b = x^(a+b)`

`(x*y)^a = x^a*y^a`


= `(2^6*x^2)^(-1/6)*(2^5*x^5)^(-2/5)`

= `(2^6)^(-1/6)*(x^2)^(-1/6)*(2^5)^(-2/5)*(x^5)^(-2/5)`

= `2^(6*(-1/6))*x^(2*(-1/6))*2^(5*(-2/5))*x^(5*(-2/5))`

= `2^-1*x^(-1/3)*2^-2*x^-2 `

= `2^(-1 - 2)*x^(-1/3 - 2)`

= `2^-3*x^(-7/3)`

= `1/(8*x^(7/3))`

We’ve answered 317,785 questions. We can answer yours, too.

Ask a question